351 research outputs found

    The epidemiological impact of an HIV vaccine on the HIV/AIDS epidemic in Southern India

    Get PDF
    The potential epidemiological impact of preventive HIV vaccines on the HIV epidemic in Southern India is examined using a mathematical deterministic dynamic compartmental model. Various assumptions about the degree of protection offered by such a vaccine, the extent of immunological response of those vaccinated, and the duration of protection afforded are explored. Alternative targeting strategies for HIV vaccination are simulated and compared with the impact of conventional prevention interventions in high-risk groups and the general population. The impact of disinhibition (increased risk behavior due to the presence of a vaccine) is also considered. Vaccines that convey a high degree of protection in a share of or all of those immunized and that convey life-long immunity are the most effective in curbing the HIV epidemic. Vaccines that convey less than complete protection may also have substantial public health impact, but disinhibition can easily undo their effects and they should be used combined with conventional prevention efforts. Conventional interventions that target commercial sex workers and their clients to increase condom use can also be highly effective and can be implemented immediately, before the arrival of vaccines.Poverty and Health,Disease Control&Prevention,Health Monitoring&Evaluation,Public Health Promotion,HIV AIDS,HIV AIDS,Health Monitoring&Evaluation,Adolescent Health,HIV AIDS and Business,Health Service Management and Delivery

    Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications.

    No full text
    The aim of this study was to describe spatial and temporal variations in malaria epidemic risk in Ethiopia and to examine factors involved in relation to their implications for early warning and interpretation of geographical risk models. Forty-eight epidemic episodes were identified in various areas between September 1986 and August 1993 and factors that might have led to the events investigated using health facility records and weather data. The study showed that epidemics in specific years were associated with specific geographical areas. A major epidemic in 1988 affected the highlands whereas epidemics in 1991 and 1992 affected highland-fringe areas on the escarpments of the Rift Valley and in southern and north-western parts of the country. Malaria epidemics were significantly more often preceded by a month of abnormally high minimum temperature in the preceding 3 months than based on random chance, whereas frequency of abnormally low minimum temperature prior to epidemics was significantly lower than expected. Abnormal increases of maximum temperature and rainfall had no positive association with the epidemics. A period of low incidence during previous transmission seasons might have aggravated the events, possibly due to low level of immunity in affected populations. Epidemic risk is a dynamic phenomenon with changing geographic pattern based on temporal variations in determinant factors including weather and other eco-epidemiological characteristics of areas at risk. Epidemic early warning systems should take account of non-uniform effects of these factors by space and time and thus temporal dimensions need to be considered in spatial models of epidemic risks

    Advances and challenges in predicting the impact of lymphatic filariasis elimination programmes by mathematical modelling

    Get PDF
    Mathematical simulation models for transmission and control of lymphatic filariasis are useful tools for studying the prospects of lymphatic filariasis elimination. Two simulation models are currently being used. The first, EPIFIL, is a population-based, deterministic model that simulates average trends in infection intensity over time. The second, LYMFASIM, is an individual-based, stochastic model that simulates acquisition and loss of infection for each individual in the simulated population, taking account of individual characteristics. For settings like Pondicherry (India), where Wuchereria bancrofti infection is transmitted by Culex quinquefasciatus, the models give similar predictions of the coverage and number of treatment rounds required to bring microfilaraemia prevalence below a level of 0.5%. Nevertheless, published estimates of the duration of mass treatment required for elimination differed, due to the use of different indicators for elimination (EPIFIL: microfilaraemia prevalence < 0.5% after the last treatment; LYMFASIM: reduction of microfilaraemia prevalence to zero, within 40 years after the start of mass treatment). The two main challenges for future modelling work are: 1) quantification and validation of the models for other regions, for investigation of elimination prospects in situations with other vector-parasite combinations and endemicity levels than in Pondicherry; 2) application of the models to address a range of programmatic issues related to the monitoring and evaluation of ongoing control programmes. The models' usefulness could be enhanced by several extensions; inclusion of different diagnostic tests and natural history of disease in the models is of particular relevance

    How to optimize tuberculosis case finding: explorations for Indonesia with a health system model

    Get PDF
    BACKGROUND: A mathematical model was designed to explore the impact of three strategies for better tuberculosis case finding. Strategies included: (1) reducing the number of tuberculosis patients who do not seek care; (2) reducing diagnostic delay; and (3) engaging non-DOTS providers in the referral of tuberculosis suspects to DOTS services in the Indonesian health system context. The impact of these strategies on tuberculosis mortality and treatment outcome was estimated using a mathematical model of the Indonesian health system. METHODS: The model consists of multiple compartments representing logical movement of a respiratory symptomatic (tuberculosis suspect) through the health system, including patient- and health system delays. Main outputs of the model are tuberculosis death rate and treatment outcome (i.e. full or partial cure). We quantified the model parameters for the Jogjakarta province context, using a two round Delphi survey with five Indonesian tuberculosis experts. RESULTS: The model validation shows that four critical model outputs (average duration of symptom onset to treatment, detection rate, cure rate, and death rate) were reasonably close to existing available data, erring towards more optimistic outcomes than are actually reported. The model predicted that an intervention to reduce the proportion of tuberculosis patients who never seek care would have the biggest impact on tuberculosis death prevention, while an intervention resulting in more referrals of tuberculosis suspects to DOTS facilities would yield higher cure rates. This finding is similar for situations where the alternative sector is a more important health resource, such as in most other parts of Indonesia. CONCLUSION: We used mathematical modeling to explore the impact of Indonesian health system interventions on tuberculosis treatment outcome and deaths. Because detailed data were not available regarding the current Indonesian population, we relied on expert opinion to quantify the parameters. The fact that the model output showed similar results to epidemiological data suggests that the experts had an accurate understanding of this subject, thereby reassuring the quality of our predictions. The model highlighted the potential effectiveness of active case finding of tuberculosis patients with limited access to DOTS facilities in the developing country setting

    Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best.

    No full text
    The aim of this study was to assess the accuracy of different methods of forecasting malaria incidence from historical morbidity patterns in areas with unstable transmission. We tested five methods using incidence data reported from health facilities in 20 areas in central and north-western Ethiopia. The accuracy of each method was determined by calculating errors resulting from the difference between observed incidence and corresponding forecasts obtained for prediction intervals of up to 12 months. Simple seasonal adjustment methods outperformed a statistically more advanced autoregressive integrated moving average method. In particular, a seasonal adjustment method that uses mean deviation of the last three observations from expected seasonal values consistently produced the best forecasts. Using 3 years' observation to generate forecasts with this method gave lower errors than shorter or longer periods. Incidence during the rainy months of June-August was the most predictable with this method. Forecasts for the normally dry months, particularly December-February, were less accurate. The study shows the limitations of forecasting incidence from historical morbidity patterns alone, and indicates the need for improved epidemic early warning by incorporating external predictors such as meteorological factors

    The Long Term Effect of Current and New Interventions on the New Case Detection of Leprosy: A Modeling Study

    Get PDF
    Leprosy is a contagious disease that will remain prevalent, despite the declining number of patients worldwide over the last century. With approximately 250,000 new cases detected annually, leprosy is far from being eradicated. Leprosy can be treated with drugs after disease detection

    A general framework to support cost-efficient survey design choices for the control of soil-transmitted helminths when deploying Kato-Katz thick smear

    Get PDF
    Background To monitor and evaluate soil-transmitted helminth (STH) control programs, the World Health Organization (WHO) recommends screening stools from 250 children, deploying Kato-Katz thick smear (KK). However, it remains unclear whether these recommendations are suffi-cient to make adequate decisions about stopping preventive chemotherapy (PC) (preva-lence of infection &lt;2%) or declaring elimination of STHs as a public health problem (prevalence of moderate-to-heavy intensity (MHI) infections &lt;2%). Methodology We developed a simulation framework to determine the effectiveness and cost of survey designs for decision-making in STH control programs, capturing the operational resources to perform surveys, the variation in egg counts across STH species, across schools, between and within individuals, and between repeated smears. Using this framework and a lot quality assurance sampling approach, we determined the most cost-efficient survey designs (number of schools, subjects, stool samples per subject, and smears per stool sam-ple) for decision-making. Principal findings For all species, employing duplicate KK (sampling 4 to 6 schools and 64 to 70 subjects per school) was the most cost-efficient survey design to assess whether prevalence of any infection intensity was above or under 2%. For prevalence of MHI infections, single KK was the most cost-efficient (sampling 11 to 25 schools and 52 to 84 children per school). Conclusions/Significance KK is valuable for monitoring and evaluation of STH control programs, though we recom-mend deploying a duplicate KK on a single stool sample to stop PC, and a single KK to declare the elimination of STHs as a public health problem.</p

    The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin

    Get PDF
    Contains fulltext : 97422.pdf (publisher's version ) (Open Access)BACKGROUND: Schistosomiasis is one of the major parasitic diseases in the world in terms of people infected and those at risk. Infection occurs through contact with water contaminated with larval forms of the parasite, which are released by freshwater snails and then penetrate the skin of people. Schistosomiasis infection and human water contact are thus essentially linked, and more knowledge about their relationship will help us to develop appropriate control measures. So far, only few studies have related water contact patterns to infection levels. METHODS: We have conducted detailed direct water contact observations in a village in Northern Senegal during the first years of a massive Schistosoma mansoni outbreak to determine the role of human water contact in the extent of the epidemic.We quantified water contact activities in terms of frequency and duration, and described how these vary with age and sex. Moreover, we assessed the relationship between water contact- and infection intensity patterns to further elucidate the contribution of exposure to the transmission of schistosomiasis. RESULTS: This resulted in over 120,000 recorded water contacts for 1651 subjects over 175 observation days. Bathing was the main activity, followed by household activities. Frequency and duration of water contact depended on age and sex rather than season. Water contacts peaked in adolescents, women spent almost twice as much time in the water as men, and water contacts were more intense in the afternoon than in the morning, with sex-specific intensity peaks. The average number of water contacts per person per day in this population was 0.42; the average time spent in the water per person per day was 4.3 minutes. CONCLUSIONS: The observed patterns of water contact behavior are not unusual and have been described before in various other settings in sub-Saharan Africa. Moreover, water contact levels were not exceptionally high and thus cannot explain the extremely high S. mansoni infection intensities as observed in Northern Senegal. Comparison with fecal egg counts in the respective age and sex groups further revealed that water contact levels did not unambiguously correspond with infection levels, indicating that factors other than exposure also play a role in determining intensity of infection
    corecore